Evaluation of alternative powders for Forensic Papilloscopy


Resumo

Fingerprints and other ridge skin impressions has been one of the most important evidences for identifying individuals during a criminal investigation. However, the substances used for fingerprint and other ridge skin impressions revelation in Forensic Papilloscopy are usually toxic. Thus, this work aimed to reduce the risk to which professionals in the area are exposed, through the use of efficient, less toxic and economically viable revealers. Furthermore, the studies were directed to the visualization of latent fingerprints and other ridge skin impressions deposited on different materials with non-porous surfaces such as rough Formica, varnished wood, raw metal, galvanized metal and glass, in order to find more appropriate developers that provide good image resolution in spite of the surface. For this study, a search was made in the literature for non-toxic dyeing substances appropriate for fingerprint and other ridge skin impressions development by the powder method, in addition to a UV-Vis spectrophotometry characterization of its dye compounds. In this context, this work presents the study of the potential for implementation of the food dyes and natural products powders red beet, hibiscus, algae Spirulina, indigo carmine and tartrazine in criminal investigations.


Referências

  1. J.A. Velho. Ciências Forenses: Uma introdução às principais áreas da Criminalística Moderna. Editora Millennium, Brasil, 2017.
  2. A.R.D.L. Figini. Datiloscopia e Revelação de Impressões Digitais. Editora Millennium, Brasil, 2012.
  3. R.K. Garg, H. Kumari, R. Kaur. A new technique for visualization of latent fingerprints on various surfaces using powder from turmeric: A rhizomatous herbaceous plant (Curcuma longa). Egyptian Journal of Forensic Sciences 1(1), 53-57, 2011.
  4. E.H. Holder Junior, L.O Robinson, J.H. Laub. The Fingerprint Sourcebook. Createspace Pub, United States of America, 2014.
  5. S.A Sari, H. Ningsih, Jasmidi, A. Kembaren, N.A. Mahat. Development of gambir powder as a cheap and green fingerprint powder for forensic applications. AIP Conference Proceedings 2155(1), 020023.1-020023.5, 2019.
  6. F.C.G. Souter, C. Van Netten, R. Brands. Morbidity in policemen occupationally exposed to fingerprint powders. International Journal of Environmental Health Research 2(2), 114-119, 1992.
  7. International Agency for Research on Cancer. Carbon black, titanium dioxide and talc. IARC monographs on the evaluation of carcinogenic risks to humans, Who Press, France, 2010.
  8. H. Kumari, R. Kaur, R.K. Garg. New visualizing agents for latent fingerprints: Synthetic food and festival colors. Egyptian Journal of Forensic Sciences 1(3-4), 133-139, 2011.
  9. P. Anastas, N. Eghbali. Green Chemistry: Principles and Practice. Chemical Society Reviews 39(1), 301-312, 2010.
  10. A.L. Schiozer, L.E.S. Barata. Estabilidade de Corantes e Pigmentos de Origem Vegetal. Revista Fitos 3(2), 6-24, 2013.
  11. H-H. Perkampus. UV-VIS Spectroscopy and Its Applications. Springer-Verlag, Germany, 1992.
  12. T.J. Mason. Sonochemistry. Oxford University Press, United States of America, 1999.
  13. G.S. Sodhi, J. Kaur. Powder method for detecting latent fingerprints: a review. Forensic Science International 120(3), 172-176, 2001.
  14. L.C.P. Gonçalves, A.C. Marcato, A.C.B. Rodrigues, A.P.E. Pagano, B.C. Freitas, C.O. Machado, K.K. Nakashima, L.C. Esteves, N.B. Lopes, E.L. Bastos. Betalains: from the Colors of Beetroots to the Fluorescence of Flowers. Revista Virtual de Química 7(1), 292-309, 2015.
  15. E.A. Hussain, Z. Sadiq, M. Zia-Ul-Haq. Betalains: biomolecular aspects. Springer Cham, United Kingdom, 2018.
  16. D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan. Introdução à espectroscopia. Cengage Learning, Brasil, 2016.
  17. G. Gradinaru, C.G. Biliaderi, S. Kallithraka, P. Kefalas, C. Garcia-Viguera. Thermal stability of Hibiscus sabdariffa L. anthocyanins in solution and in solid state: effects of copigmentation and glass transition. Food Chemistry 83(3), 423-436, 2003.
  18. T. Sukwattanasinit, J. Burana-Osot, U. Sotanaphun. Simple and rapid spectrophotometric method for quality determination of roselle (Hibiscus sabdariffa). Thai Journal Of Pharmaceutical Sciences 40(4), 194-199, 2016.
  19. D. Ramírez-Martínez, E. Alvarado-Méndez, M. Trejo-Durán, M.A. Vázquez-Guevara. Nonlocal nonlinear refraction in Hibiscus Sabdariffa with large phase shifts. Optics Express 22(21), 25161-25170, 2014.
  20. F.S. Fortunato. Incorporação de hidroxicinamatos e perfil de atividade enzimática em diferentes genótipos de abacaxizeiro suscetível e resistente à fusariose submetidos ao estrese biótico e abiótico. Tese de Doutorado, Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, 2014.
  21. L.A. Silva. Estudo do processo biotecnológico de produção, extração e recuperação do pigmento ficocianina da Spirulina plantesis. Dissertação de Mestrado, Programa de Pós-Graduação em Processos Biotecnológicos, Universidade Federal do Paraná, 2008.
  22. L.E. Paramonov. Absorption Coefficient Spectrum and Intracellular Pigment Concentration by an Example of Spirulina platensis. Atmospheric and Oceanic Optics 31(3), 263-268, 2018.
  23. A. Vonshak. Spirulina platensis (Arthrospira): Physiology, cell-biology and biotechnology. CRC Press: Taylor & Francis Group, United Kingdom, 1997.
  24. J. Wang, L. Lu, F. Feng. Improving the Indigo Carmine Decolorization Ability of a Bacillus amyloliquefaciens Laccase by Site-Directed Mutagenesis. Catalysts 7(9), 275-285, 2017.
  25. E. Ortiz, V. Gómez-Chávez, C. M. Cortés-Romero, H. Solís, R. Ruiz-Ramos, S. Loera-Serna. Degradation of Indigo Carmine Using Advanced Oxidation Processes: Synergy Effects and Toxicological Study. Journal Of Environmental Protection 7(12), 1693-1706, 2016.
  26. P. Oancea, V. Meltzer. Photo-Fenton process for the degradation of Tartrazine (E102) in aqueous medium. Journal Of The Taiwan Institute Of Chemical Engineers 44(6), 990-994, 2013.
  27. M. Gobara, A. Baraka. Tartrazine Solution as Dosimeter for Gamma Radiation Measurement. International Letters Of Chemistry, Physics And Astronomy 33, 106-117, 2014.
  28. M. Zhang, Y. Ou, X. Du, X. Li, H. Huang, Y. Wen, X. Zhang. Systematic study of dye loaded small mesoporous silica nanoparticles for detecting latent fingerprints on various substrates. Journal Of Porous Materials 24(1), 13-20, 2016.
  29. C. Yuan, M. Li, M. Wang, L. Zhang. Cationic dye-diatomite composites: Novel dusting powders for developing latent fingerprints. Dyes And Pigments 153, 18-25, 2018.
  30. M. Takatsu, O. Shimoda, H. Teranishi. Vapor-phase Staining of Cyanoacrylate-Fumed Latent Fingerprints Using p-Dimethylaminobenzaldehyde. Journal Of Forensic Sciences 57(2), 515-520, 2011.
  31. J.H. Clark, D. Macquarrie. Handbook of Green Chemistry and Technology. Blackwell Science, United Kingdom, 2002.

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2021 Revista Brasileira de Criminalística

Compartilhe

Autor(es)