Fenotipagem forense pelo DNA através de SNPs


Resumo

A fenotipagem forense pelo DNA se apresenta como uma abordagem promissora para suprir lacunas na busca de pessoas desconhecidas, em investigações criminais, e na identificação de vítimas de catástrofes e de pessoas desaparecidas. Essa metodologia permite a previsão individual de características externamente visíveis (CEVs) a partir de análises com SNPs informativos de fenótipos. Entre esses SNPs, os mais bem descritos são aqueles relacionados com as características de pigmentação, como cor dos olhos, pele e cabelo. Estudos vêm demonstrando o elevado poder de predição dessas CEVs, apresentando resultados satisfatórios na predição da cor de íris castanha e azul e cabelo ruivo, enquanto para as demais ainda são necessárias mais pesquisas para predizer com precisão esses fenótipos. Embora seja muito promissora, a aplicação prática da fenotipagem forense pelo DNA levanta diversas questões de ordem ética e legal. No Brasil, avanços ainda precisam acontecer, uma vez que a população brasileira é heterogênea e grande parte dos marcadores descritos é relacionada às populações europeias. Neste sentido, o Brasil já conta com a Rede Integrada de Bancos de Perfis Genéticos (RIBPG), a qual visa compartilhar e comparar os perfis genéticos entre os bancos do país. Em um futuro próximo essa metodologia estará apta a integrar às rotinas forenses, com grande aplicabilidade e confiabilidade.


Palavras-chave

SNPs Informativos de Fenótipos
Características Externamente Visíveis (CEVs)
Pigmentação
Genética Forense.

Referências

  1. J. Butler, Forensic DNA typing: Biology, technology and genetics of STR markers, New York, ed. 2, 2005.
  2. M. Litt, J. a Luty, A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44, 397-401, 1989.
  3. B. Sobrino, M. Brión, A. Carracedo, SNPs in forensic genetics, A review on SNP typing methodologies. Forensic Sci. Int. 154, 181-194 2005.
  4. A. J. Brookes, The essence of SNPs. Gene. 234, 177-186, 1999.
  5. B. Budowle, SNP Typing Strategies. Forensic Sci. Int. 146, S139-S142, 2004.
  6. M. Javed R, Current research status, databases and application of single nucleotide polymorphism. Pakistan J. Biol. Sci. 13, 657-663, 2010.
  7. J. M. Butler, M. D. Coble, P. M. Vallone, STRs vs. SNPs, thoughts on the future of forensic DNA testing. Forensic Sci. Med. Pathol. 3, 200-205, 2007.
  8. B. Budowle, A. Van Daal, Forensically relevant SNP classes. Biotechniques 44, 603-610, 2008.
  9. T. N. Frudakis, Molecular photofitting, Predicting Ancestry and Phenotype Using DNA Elsevier, 2008.
  10. M. Kayser, P. de Knijff, Improving human forensics through advances in genetics, genomics and molecular biology. Nat. Rev. Genet. 12, 179-192, 2011.
  11. M. A. Jobling, P. Gill, Encoded evidence, DNA in forensic analysis. Nat. Rev. Genet. 5, 739-751, 2004.
  12. M. Kayser, Forensic DNA Phenotyping, Predicting human appearance from crime scene material for investigative purposes. Forensic Sci. Int. Genet. 18, 33-48, 2015.
  13. M. Kayser, P. M. Schneider, DNA-based prediction of human externally visible characteristics in forensics, Motivations, scientific challenges, and ethical considerations. Forensic Sci. Int. Genet. 3, 154-161, 2009.
  14. H. Pulker, M. V. Lareu, C. Phillips, A. Carracedo, Finding genes that underlie physical traits of forensic interest using genetic tools. Forensic Sci. Int. Genet. 1, 100-104, 2007.
  15. E. a M. Graham, DNA reviews, predicting phenotype. Forensic Sci. Med. Pathol. 4, 196-199, 2008.
  16. O. Spichenok et al., Prediction of eye and skin color in diverse populations using seven SNPs. Forensic Sci. Int. Genet. 5, 472-478, 2011.
  17. S. Walsh et al., IrisPlex, A sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci. Int. Genet. 5, 170-180, 2011.
  18. S. Walsh et al., The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Sci. Int. Genet. 7, 98-115, 2013.
  19. Y. Ruiz et al., Further development of forensic eye color predictive tests. Forensic Sci. Int. Genet. 7, 28-40, 2013.
  20. K. L. Hart et al., Improved eye- and skin-color prediction based on 8 SNPs. Croat. Med. J. 54, 248-256, 2013.
  21. O. Maroñas et al., Development of a forensic skin colour predictive test. Forensic Sci. Int. Genet. 13, 34-44, 2014.
  22. H.J. Edgar, Microevolution of African American dental morphology. Am. J. Phys. Anthropol. 132(4), 535-544, 2007.
  23. R. a. Sturm, T. N. Frudakis, Eye colour, Portals into pigmentation genes and ancestry. Trends Genet. 20, 327-332, 2004.
  24. J. M. Akey et al., Interaction between the melanocortin-1 receptor and P genes contributes to inter-individual variation in skin pigmentation phenotypes in a Tibetan population. Hum. Genet. 108, 516-520, 2001.
  25. M. Kayser et al., Three Genome-wide Association Studies and a Linkage Analysis Identify HERC2 as a Human Iris Color Gene. Am. J. Hum. Genet. 82, 411-423, 2008.
  26. P. Sulem et al., Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat. Genet. 39, 1443-1452, 2007.
  27. T. Frudakis et al., Sequences associated with human iris pigmentation. Genetics 165, 2071-2083, 2003.
  28. H. Eiberg et al., Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression. Hum. Genet. 123, 177-187, 2008.
  29. R. a. Sturm et al., A Single SNP in an Evolutionary Conserved Region within Intron 86 of the HERC2 Gene Determines Human Blue-Brown Eye Color. Am. J. Hum. Genet. 82, 424-431, 2008.
  30. M. H. Brilliant, The mouse p pink-eyed dilution and human P genes, oculocutaneous albinism type 2 OCA2, and melanosomal pH. Pigment Cell Res. 14, 86-93, 2001.
  31. D. L. Duffy et al., A three-single-nucleotide polymorphism haplotype in intron 1 of OCA2 explains most human eye-color variation. Am. J. Hum. Genet. 80, 241-252, 2007.
  32. P. Sulem et al., Two newly identified genetic determinants of pigmentation in Europeans. Nat. Genet. 40, 835-837, 2008.
  33. F. Liu et al., Eye color and the prediction of complex phenotypes from genotypes. Curr. Biol. 19, 192-193, 2009.
  34. S. Walsh et al., Developmental validation of the HIrisPlex system, DNA-based eye and hair colour prediction for forensic and anthropological usage. Forensic Sci. Int. Genet. 9, 150-161, 2014.
  35. M. Gerstenblith, A. Goldstein, M. Fargnoli, K. Peris, M. Landi, Mutational Spectrum and Genotype - Phenotype Correlations in Mevalonate Kinase Deficiency. Hum. Mutat. 27, 796-802, 2006.
  36. W. Branicki, U. Brudnik, T. Kupiec, P. Wolañska-Nowak, A. Wojas-Pelc, Determination of phenotype associated SNPs in the MC1R gene. J. Forensic Sci. 52, 349-354, 2007.
  37. N. Flanagan et al., Pleiotropic effects of the melanocortin 1 receptor MC1R gene on human pigmentation. Hum Mol Genet. 9, 2531-2537, 2000.
  38. J. L. Rees, The melanocortin 1 receptor MC1R, more than just red hair. Pigment Cell Res. 13, 135-140, 2000.
  39. P. Valverde, E. Healy, I. Jackson, J. L. Rees, a J. Thody, Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat. Genet. 11, 328-330, 1995.
  40. N. F. Box, J. R. Wyeth, L. E. O’Gorman, N. G. Martin, R. A. Sturm, Characterization of melanocyte stimulating hormone receptor variant alleles in twins with red hair. Hum Mol Genet. 6, 1891-1897, 1997.
  41. J. Han et al., A Genome-Wide Association Study Identifies Novel Alleles Associated with Hair Color and Skin Pigmentation. PLoS Genet. 4, e1000074, 2008.
  42. W. Branicki et al., Model-based prediction of human hair color using DNA variants. Hum. Genet. 129, 443-454, 2011.
  43. N. G. Jablonski, G. Chaplin, Human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. 107, 8962-8968, 2010.
  44. G. S. Barsh, What Controls Variation in Human Skin Color? PLoS Biol. 1, e7, 2003.
  45. R. P. Stokowski et al., A Genomewide Association Study of Skin Pigmentation in a South Asian Population. Am. J. Hum. Genet. 81, 1119-1132, 2007.
  46. S. I. Candille et al., Genome-Wide Association Studies of Quantitatively Measured Skin, Hair, and Eye Pigmentation in Four European Populations. PLoS One 7, e48294, 2012.
  47. J. D. Andersen et al., Genetic variants and skin colour in Danes. Forensic Sci. Int. Genet. 3, e153-e154, 2011.
  48. A. Pneuman, Z. M. Budimlija, T. Caragine, M. Prinz, E. Wurmbach, Verification of eye and skin color predictors in various populations. Leg. Med. 14, 78-83, 2012.
  49. V. Mushailov, S. a. Rodriguez, Z. M. Budimlija, M. Prinz, E. Wurmbach, Assay Development and Validation of an 8-SNP Multiplex Test to Predict Eye and Skin Coloration, J. Forensic Sci. 60(4), 990-1000, 2015.
  50. BRASIL, Lei no 12.654, de 28 de maio de 2012. Diário da República Federativa do Brasil, 2012.
  51. V. Toom et al., Approaching ethical, legal and social issues of emerging forensic DNA phenotyping FDP technologies comprehensively, Reply to “Forensic DNA phenotyping, Predicting human appearance from crime scene material for investigative purposes” by Manfred Kayser. Forensic Sci. Int. Genet. 22, e1-e4, 2016.
  52. C. E. Maclean, A. Lamparello, Forensic DNA Phenotyping in Criminal Investigations and Criminal Courts?, Assessing and Mitigating the Dilemmas Inherent in the Science, Recent Adv. DNA Gene Seq. 8(2), 104-112, 2015.
  53. T. C. Lins, R. G. Vieira, B. S. Abreu, D. Grattapaglia, R. W. Pereira, Genetic composition of Brazilian population samples based on a set of twenty-eight ancestry informative SNPs, Am. J. Hum. Biol. 22(2), 187-192, 2010.
  54. S. R. Giolo et al., Brazilian urban population genetic structure reveals a high degree of admixture. Eur. J. Hum. Genet. 20, 111-116, 2012.
  55. D. a. de Azevedo, L. A. F. da Silva, L. Gusmão, E. F. de Carvalho, Analysis of Y chromosome SNPs in Alagoas, Northeastern Brazil. Forensic Sci. Int. Genet. 2, 421-422, 2009.
  56. A. Freire-Aradas et al., Exploring iris colour prediction and ancestry inference in admixed populations of South America. Forensic Sci. Int. Genet. 13, 3-9, 2014.
  57. F. de Araújo Lima, F. de Toledo Gonçalves, C. Fridman, SLC24A5 and ASIP as phenotypic predictors in Brazilian population for forensic purposes. Leg. Med. 17, 261-266, 2015.
  58. BRASIL, Decreto no 7.950, de 12 de março de 2013. Diário da República Federativa do Brasil.
  59. P. Brasil, Banco de perfis genéticos reúne mais de 2.500 amostras 2015, available at http,//www.brasil.gov.br/cidadania-e-justica/2015/03/banco-de-perfis-geneticos-reune-mais-de-2-500-amostras.
  60. BRASIL, Relatório Da Rede Integrada De Bancos De Perfis Genéticos. Ministério da Justiça 2015, pp. 1-12.

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2016 Revista Brasileira de Criminalística

Compartilhe

Download

Autor(es)