Análise probabilística de colisões veiculares pelo método de Monte Carlo


Resumo

Este trabalho apresenta um modelo para análise probabilística de perícias de colisão de veículos automotores, apresentando um modelo computacional flexível para avaliação da confiabilidade por simulação Monte Carlo. Os procedimentos desenvolvidos buscaram a representação estatística dos parâmetros ambientais e psicomotores, tais como coeficientes de atrito e ritmo de Reação, em uma simulação, com 10.000 iterações, da confiabilidade em um modelo bidimensional aplicado a um estudo de caso de colisão frontal envolvendo dois veículos de passeio, obtendo intervalos unilaterais e bilaterais para as variáveis estudadas.


Palavras-chave

Colisão veicular
Método de Monte Carlo
Simulação computacional

Referências

  1. P. Vithayasrichareon, I.F. Macgill. A Monte Carlo based decision support tool for assessing generation portfolios in future carbon constrained electricity industries. Energ. Policy, 41, 374-392, 2012.
  2. G. Kost, S.M. Werner. Use of Monte Carlo Simulation Techniques in Accident Reconstruction, SAE Paper No. 940719. Society of Automotive Engineers, 1994.
  3. L.L. Almeida. Manual de Perícias em Acidentes de Trânsito. Campinas-SP: Millennium Editora, 504p., 2011.
  4. I.M. Sobol. A primer for the Monte Carlo method. Florida: CRC Press, 1994.
  5. P. Vaz. Monte Carlo methods and techniques status and prospects for future evolution. Appl. Radiat. Isotopes 68, 536-541, 2010.
  6. D. Courard-Hauri. Using Monte Carlo analysis to investigate the relationship between overconsumption and uncertain access to one's personal utility function. Ecol. Econ. 64, 152-162, 2007.
  7. S. García-Pareja, M. Vilches, A.M. Lallena. Ant colony method to control variance reduction techniques in the Monte Carlo simulation of clinical electron linear accelerators of use in cancer therapy. J. Comput. Appl. Math. 233, 1534-1541, 2010.
  8. I. Buvat, D. Lazaro. Monte Carlo simulations in emission tomography and GATE: an overview. Nucl. Instrum. Methods in Phys. Res. 569, 323-329, 2006.
  9. C.J. Mode, R.J. Gallop. A review on Monte Carlo simulation methods as they apply to mutation and selection as formulated in Wright–Fisher models of evolutionary genetics. Math. Biosci. 211, 205-225, 2008.
  10. J. Guiot, F. Torre, D. Jolly, O. Peyron, J.J. Boreux, R. Cheddadi. Inverse vegetation modeling by Monte Carlo sampling to reconstruct palaeoclimates under changed precipitation seasonality and CO2 conditions: application to glacial climate in Mediterranean region. Ecol. Model. 127, 119-140, 2000.
  11. C. Martin, E. Ayesa. An Integrated Monte Carlo Methodology for the calibration of water quality Models. Ecol. Model. 221, 2656-2667, 2010.
  12. Y. Ding, K. Arai. Forest parameter estimation by means of Monte-Carlo simulations with experimental considerations: estimation of multiple reflections among trees depending on forest parameters. Adv. Space Res. 43, 438-447, 2009.
  13. A. Ramírez, C. Keizer, J.P.V. Sluijs, J. J. Olivier, L. Brandes. Monte Carlo analysis of uncertainties in the Netherlands greenhouse gas emission inventory for 1990-2004. Atmos. Environ. 42, 8263-8272, 2008.
  14. X. Tang, Z. Wang, J. Zhu, A.E. Gbaguidi, Q. Wu, J. Li, T. Zhu. Sensitivity of ozone to precursor emissions in urban Beijing with a Monte Carlo scheme. Atmos. Environ. 44, 3833-3842, 2010.
  15. J. Haarhoff, E.H. Mathews. Monte Carlo method for thermal building simulation. Energ. Buildings 38, 1395-1399, 2006.
  16. J. Keirstead, N. Shah. Calculating minimum energy urban layouts with mathematical programming and Monte Carlo analysis techniques. Comput. Environ. Urban Systems 35, 368-377, 2011.
  17. W. Wach, J. Unarski. Uncertainty of calculation results in vehicle collision analysis. Forensic Sci. Int. 167(2), 181-188, 2007.
  18. M. Cai, T. Zou, P. Luo, J. Li. Evaluation of simulation uncertainty in accident reconstruction via combining Response Surface Methodology and Monte Carlo Method. Transport. Res. C: Emerging Technologies 48, 241-255, 2014.
  19. G. Davis, A. Mudgal. Bayesian Uncertainty Quantification for Planar Impact Crashes via Markov Chain Monte Carlo Simulation. SAE Technical Paper, 2016.
  20. I. Han, I. Impulse-momentum based analysis of vehicle collision accidents using Monte Carlo simulation methods. Int. J. Automot. Techn. 16(2), 253-270, 2015.
  21. Brasil. Lei n. 9.503, de 23 de setembro de 1997. Código de Trânsito Brasileiro. Disponível no sítio eletrônico:<http://www.planalto.gov.br/ccivil_03/LEIS/L9503.htm>. Acessado em 21 novembro de 2015.

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2016 Revista Brasileira de Criminalística

Compartilhe

Download

Autor(es)

  • Henrique P. Carvalho,
  • Affonso Armigliato,
  • Lino L. Almeida,
  • Antônio R. Correia,
  • Carlo R. De Musis,
  • Henrique P. Carvalho

    POLITEC/MT

    Affonso Armigliato

    POLITEC/MT

    Lino L. Almeida

    POLITEC/MT

    Antônio R. Correia

    Diretoria Metropolitana de Criminalística, Perícia Oficial e Identificação Técnica (POLITEC), Cuiabá (MT), Brasil

    Mestre em engenharia nuclear, perito em engenharia legal da POLITEC/MT

    Carlo R. De Musis

    POLITEC/MT

    Sou doutor em Educação pela Pontifícia Universidade Católica de São Paulo, mestre em Agricultura Tropical e engenheiro civil pela Universidade Federal de Mato Grosso. Atuo como orientador de mestrado e doutorado nos Programas de Estudos Pós-Graduados em Física Ambiental da Universidade Federal de Mato Grosso, e em Ciências Ambientais na Universidade de Cuiabá. Atuo também como perito criminal na área de Engenharia Legal da POLITEC/MT. Tenho-me dedicado a estudos e pesquisas multidisciplinares tendo como referentes estatística multivariada, teoria das representações sociais, avaliação de instituições de ensino superior, conforto ambiental, interação atmosfera-biosfera, modelagem por sistemas dinâmicos e física ambiental.